90 research outputs found

    Spectral Efficiency Optimization in Flexi-Grid Long-Haul Optical Systems

    Full text link
    Flexible grid optical networks allow a better exploitation of fiber capacity, by enabling a denser frequency allocation. A tighter channel spacing, however, requires narrower filters, which increase linear intersymbol interference (ISI), and may dramatically reduce system reach. Commercial coherent receivers are based on symbol by symbol detectors, which are quite sensitive to ISI. In this context, Nyquist spacing is considered as the ultimate limit to wavelength-division multiplexing (WDM) packing. In this paper, we show that by introducing a limited-complexity trellis processing at the receiver, either the reach of Nyquist WDM flexi-grid networks can be significantly extended, or a denser-than-Nyquist channel packing (i.e., a higher spectral efficiency (SE)) is possible at equal reach. By adopting well-known information-theoretic techniques, we design a limited-complexity trellis processing and quantify its SE gain in flexi-grid architectures where wavelength selective switches over a frequency grid of 12.5GHz are employed.Comment: 7 pages, 9 figure

    Analysis of modal coupling due to birefringence and ellipticity in strongly guiding ring-core OAM fibers

    Get PDF
    After briefly recalling the issue of OAM mode purity in strongly-guiding ring-core fibers, this paper provides a methodology to calculate the coupling strength between OAM mode groups due to fiber perturbations. The cases of stress birefringence and core ellipticity are theoretically and numerically investigated. It is found that both perturbations produce the same coupling pattern among mode groups, although with different intensities. The consequence is that birefringence causes the highest modal crosstalk because it strongly couples groups with a lower propagation-constant mismatch. The power coupling to parasitic TE and TM modes is also quantified for both perturbations and is found to be non-negligible. Approximate modal crosstalk formulas valid for weakly-guiding multi-core fibers, but whose parameters are adapted to the present case of strongly guiding OAM fibers, are found to provide a reasonable fit to numerical results. Finally, the effect that modal coupling has on OAM transmission is assessed in terms of SNR penalty

    Relativistic Digital Twin: Bringing the IoT to the Future

    Full text link
    Complex IoT ecosystems often require the usage of Digital Twins (DTs) of their physical assets in order to perform predictive analytics and simulate what-if scenarios. DTs are able to replicate IoT devices and adapt over time to their behavioral changes. However, DTs in IoT are typically tailored to a specific use case, without the possibility to seamlessly adapt to different scenarios. Further, the fragmentation of IoT poses additional challenges on how to deploy DTs in heterogeneous scenarios characterized by the usage of multiple data formats and IoT network protocols. In this paper, we propose the Relativistic Digital Twin (RDT) framework, through which we automatically generate general-purpose DTs of IoT entities and tune their behavioral models over time by constantly observing their real counterparts. The framework relies on the object representation via the Web of Things (WoT), to offer a standardized interface to each of the IoT devices as well as to their DTs. To this purpose, we extended the W3C WoT standard in order to encompass the concept of behavioral model and define it in the Thing Description (TD) through a new vocabulary. Finally, we evaluated the RDT framework over two disjoint use cases to assess its correctness and learning performance, i.e., the DT of a simulated smart home scenario with the capability of forecasting the indoor temperature, and the DT of a real-world drone with the capability of forecasting its trajectory in an outdoor scenario.Comment: 17 pages, 10 figures, 4 tables, 6 listing

    On nonlinearly-induced noise in single-channel optical links with digital backpropagation

    Get PDF
    In this paper, we investigate the performance limits of electronic chromatic dispersion compensation (EDC) and digital backpropagation (DBP) for a single-channel non-dispersion-managed fiber-optical link. A known analytical method to derive the performance of the system with EDC is extended to derive a first-order approximation for the performance of the system with DBP. In contrast to the cubic growth of the variance of the nonlinear noise-like interference, often called nonlinear noise, with input power for EDC, a quadratic growth is observed with DBP using this approximation. Finally, we provide numerical results to verify the accuracy of the proposed approach and compare it with existing analytical models

    Impact of Interdisciplinary Research on Planning, Running, and Managing Electromobility as a Smart Grid Extension

    Get PDF
    The smart grid is concerned with energy efficiency and with the environment, being a countermeasure against the territory devastations that may originate by the fossil fuel mining industry feeding the conventional power grids. This paper deals with the integration between the electromobility and the urban power distribution network in a smart grid framework, i.e., a multi-stakeholder and multi-Internet ecosystem (Internet of Information, Internet of Energy, and Internet of Things) with edge computing capabilities supported by cloud-level services and with clean mapping between the logical and physical entities involved and their stakeholders. In particular, this paper presents some of the results obtained by us in several European projects that refer to the development of a traffic and power network co-simulation tool for electro mobility planning, platforms for recharging services, and communication and service management architectures supporting interoperability and other qualities required for the implementation of the smart grid framework. For each contribution, this paper describes the inter-disciplinary characteristics of the proposed approaches

    The Need of Multidisciplinary Approaches and Engineering Tools for the Development and Implementation of the Smart City Paradigm

    Get PDF
    This paper is motivated by the concept that the successful, effective, and sustainable implementation of the smart city paradigm requires a close cooperation among researchers with different, complementary interests and, in most cases, a multidisciplinary approach. It first briefly discusses how such a multidisciplinary methodology, transversal to various disciplines such as architecture, computer science, civil engineering, electrical, electronic and telecommunication engineering, social science and behavioral science, etc., can be successfully employed for the development of suitable modeling tools and real solutions of such sociotechnical systems. Then, the paper presents some pilot projects accomplished by the authors within the framework of some major European Union (EU) and national research programs, also involving the Bologna municipality and some of the key players of the smart city industry. Each project, characterized by different and complementary approaches/modeling tools, is illustrated along with the relevant contextualization and the advancements with respect to the state of the art

    Scaling WDM Slotted Ring Networks

    No full text
    Using analogies between the basic theory of cell switching for datagram networks and multiwavelength slotted optical networks, we show that the buffering capabilities of high-speed slotted networks, also known as spacereuse, allows multihop networks such as WDM rings to have larger throughputs than star networks, where space reuse is not possible. By finding correspondences with the classical switching theory, WDM ring networks are extensively analyzed in uniform traffic. The multihop nature of the network, and the clear identification of the meaning of hop as it relates to throughput, help identify a novel generalized ring topology, which we call WDM Chordalring, which smoothly scales the throughput of a WDM ring by progressively adding WDM unbuffered routers up to reaching the desired saturation throughput. Routing without buffers is studied in the novel topology by simulation, and an empirical routing scheme is found that gives satisfactory performance. Using such scheme, the topol..

    On the Accuracy of the Gaussian Nonlinear Model for Dispersion-unmanaged Coherent Links

    No full text
    We discuss the reasons why the Gaussian nonlinear model provides accurate bit error rate predictions in dispersion unmanaged PDM-QPSK coherent links

    Transient gain dynamics in saturated counter-pumped raman amplifiers

    No full text
    The transient gain dynamics in saturated counter-pumped Raman amplifiers were analyzed. The strong power of the signal leading edge at the amplifier output was found to deplete the injected pump. It was shown that the gain dynamics were determined by the time behavior of a single state variable
    corecore